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The dynamics and thermodynamics of melting in two-dimensional Coulomb clusters is revisited using
molecular dynamics and Monte Carlo simulations. Several parameters are considered, including the Linde-
mann index, the largest Lyapunov exponent, and the diffusion constant. In addition to the orientational and

radial melting processes, isomerizations and complex size effects are seen to occur in a very similar way to
atomic and molecular clusters. The results are discussed in terms of the energy landscape represented through
disconnectivity graphs, with proper attention paid to the broken ergodicity problems in simulations. Clusters
bound by 1/ and e~/ r forces, and heterogeneous clusters made of singly and doubly charged species, are
also studied, as well as the evolution toward larger systems.
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I. INTRODUCTION

The finite size analogs of two-dimensional (2D) Wigner
crystals have received considerable attention from theoreti-
cians [1-16], and more recently also from experimental
groups [17-21]. Particles in mutual repulsion can be con-
fined using a variety of methods, most importantly electro-
static traps of the Paul or Penning types, and simple hard
walls, usually of circular shape. The repulsion between par-
ticles depends upon the details of the experiment. Arrays of
electrons on the surface of liquid helium [22] or in quantum
dots [23] can be described by conventional Coulomb forces.
However, logarithmic forces are more relevant for vortex
clusters in superfluids [24] or Bose-Einstein condensates
[25]. Mesoscopic colloidal particles undergo dipolar 1/7° in-
teractions within an external magnetic field [26], or a
Yukawa (screened Coulomb) potential when they are
charged and placed in a viscous medium.

Finite 2D assemblies have also been synthesised on a
more macroscopic scale, using metal particles close to 1 mm
in size [19]. In this study, the authors were able to visualize
and locate not only stable configurations, but they could also
estimate the shape of the transition states, which are here
defined as stationary points with Hessian index one [27].

Another example of experimentally accessible Wigner
crystals occurs for dusty plasmas. These highly charged par-
ticles of micrometer size and charges up to Z=10* can be
stabilized as gaseous plasmas. The gravitational forces and
the electric field balance each other, so that the dust particles
form highly regular two-dimensional structures. By changing
the electric field, or conversely the pressure, of the plasma,
transitions from solid to liquid-like phases are observed [17].
A two-stage melting was proposed, which does not follow
the predictions of two-dimensional melting theories, but
rather goes through an intermediate phase. This phase has
been described as an oscillating crystal [21]. Finally, by mea-
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suring the spectra of dust particles, it has been suggested that
the dynamics may be a size-dependent phenomenon, that is,
the effects of various types of motion such as intershell ro-
tation and breathing may play different roles [20].

A major part of our theoretical understanding of the above
systems comes from numerical studies. The static properties
of the assemblies were obtained using optimization methods
ranging from simulated annealing to genetic algorithms, and
a Mendeleev-type table was proposed by several authors
[1,5] to reflect the special stability of certain sizes. Compari-
sons with the theoretical predictions of the “Thomson atom”
[28] were also carried out [6]. Shell effects were more
generally investigated semianalytically by Koulakov and
Shklovskii [11]. Metastable configurations (excited states)
and the potential energy barriers between them have been
studied in Refs. [4,12,15,29]. Topological defects were also
identified for stable structures [13].

Melting in 2D Coulomb clusters has been a subject of
debate. The results of the classical and quantum Monte Carlo
simulations of Lozovik and Mandelshtam [2] were inter-
preted as a two-step melting process, where orientational
melting occurs prior to radial melting. In this process, shells
remain quasicrystalline, but still undergo some concerted ro-
tational motion. Radial melting conversely involves ex-
changes between particles of adjacent shells. This two-step
process is generally accepted for small assemblies, but it is
not clear whether, in large clusters, the external shell may
also exhibit orientational melting [12] or not [9].

Several factors are likely to influence the stability of 2D
Coulomb clusters. First, rotational barriers are strongly de-
pendent on the structure, which in turn depends on the size.
More stable structures are obtained when the core is based on
a triangular lattice, thus resembling most observed Wigner
crystals. More importantly, the very different nature of ori-
entational and radial melting has led to some confusion about
how suitable observables should be defined to probe these
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processes separately [14,30,31]. In their study of binary 2D
clusters, Drocco ef al. [16] chose an order parameter based
on the polar angles of the particles in order to quantify the
extent of orientational motion in Langevin molecular dynam-
ics simulations. However, this measure becomes impractical
as soon as a central particle is present, as it then becomes
very noisy.

Melting in atomic and molecular clusters also displays a
very rich phenomenology [32]. In particular, surface melting
[33], plastic transitions [34], or anomalously high melting
temperatures [35] have been identified from experiments or
simulations. For three-dimensional trapped-ion clusters, the
structures are sometimes related to those found in atomic
clusters [29]. The study of atomic clusters also shares with
Coulomb assemblies the lack of a proper universal order pa-
rameter to characterize the melting point. For instance, the
Lindemann criterion for melting does not always provide
useful information in the case of solid-solid transitions and
premelting effects [36].

The largest Lyapunov exponent A, which quantifies chaos
and the sensitivity to initial conditions, is a useful tool for
probing the complex dynamics of atomic and molecular clus-
ters [37-41], especially at melting. Because Lyapunov expo-
nents are related to the second derivatives of the potential
energy surface (PES) [42], we expect them to be sensitive to
orientational melting.

In this paper, we revisit the dynamics and thermodynam-
ics of 2D Coulomb clusters by focusing on dynamical mea-
sures such as N or the diffusion coefficient, D, and by per-
forming extensive Monte Carlo simulations employing the
parallel tempering strategy [43]. We also consider the inter-
play between the dynamics and the energy landscape of these
clusters by constructing disconnectivity graphs [44,45]. Fi-
nally, we investigate how the thermodynamic behavior
evolves with size.

This paper is organized as follows: After briefly present-
ing our methods, we choose some specific examples to illus-
trate the difficulties associated with an unambiguous defini-
tion of the melting point in these clusters, and we then
discuss the large size variations. We summarize our conclu-
sions in Sec. IV.

II. METHODS

Two-dimensional Wigner clusters are characterized by the
following classical potential energy:

ER) =S %]lexp(— Kry) + A2, (1)

i<j Tij

In this equation, {g;}=1 or 2 are the charges carried by the
particles, r;; is the distance between particles i and j, and r; is
the distance from particle i to the cluster center-of-mass. The
parameter p will usually be 1 (Coulomb case), but we also
specifically studied the case p=3 (dipolar interaction) for
which some results will be selected below. The range of the
electrostatic potential, x, was set to O (pure Coulomb) or to a
finite value (shielded Coulomb). Finally, and for comparison
with the work reported in Ref. [16] on binary clusters, we
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have taken A=10. It should be noted that, in the absence
of the exponential term, the physics of the system is inde-
pendent of A: under the transformation (r,E)
—[rAY@*P) E/AP/?*P)] the energy can be cast in a form that
does not depend on A. In the following presentation, unit
masses and charges are used and all properties are explicitly
given in dimensionless reduced units.

The global minima of the clusters were investigated using
the Monte Carlo plus minimization algorithm, also known as
basin-hopping [46,47]. The 2D clusters can generally be de-
scribed as multishell systems, and we will use the (n,,n,, ...)
notation for a homogeneous cluster having n; particles in its
i shell. Binary clusters will be referred to as {N,,N,}, where
N, and N, are the respective numbers of singly and
doubly charged particles. Due to the relatively long range of
the potential [27], global optimization is relatively straight-
forward for Coulomb systems.

Beyond the stable isomers, we also investigated higher-
index stationary points on the energy landscape. Locating the
saddle points with Hessian index one enabled us to construct
disconnectivity graphs [27], in order to relate the observed
dynamical and thermodynamical behavior to the potential
energy surface for these clusters. We refer the reader to Ref.
[27] for further details of how stationary points are located
and disconnectivity graphs are generated.

The dynamics has also been studied by solving Hamil-
ton’s equations of motion at constant energy. The coupled
equations were integrated by the four-step Runge-Kutta
method, which keeps the energy constant to at least seven
digits. For the first trajectory, the initial positions of the par-
ticles were obtained from the global minimum structure and
a random set of momenta were chosen. The momenta were
then scaled to set the linear and angular momentum to zero
and the vibrational temperature to around 1077, The time step
was taken to be 0.0025. The first 10° steps were used to
equilibrate the system and discarded, then 10° steps were
used for each simulation. Further trajectories start with the
configuration obtained from the previous run, with velocities
scaled approximately to give a new temperature increased by
a factor 1.25. Again, the equilibration steps were discarded.

For each trajectory the average kinetic temperature, root-
mean-square (RMS) bond-length fluctuation index &, the
maximal Lyapunov exponent (MLE) \, and diffusion coeffi-
cient D were calculated. 6 is commonly used to detect melt-
ing in bulk or finite (3D) atomic systems, as it is expected to
jump from a low value to around 0.1-0.15. Both the diffu-
sion coefficient and the Lyapunov exponent were calculated
from shorter parts of the entire trajectory. D was obtained
from the slope of the mean square atomic displacement. This
measure describes the breathing and inter-shell exchanges
(isomerizations), but does not identify even qualitative
changes in the rotational structure. For homogeneous sys-
tems it is very difficult to define measures of the angular
motion. Since the total angular momentum is zero, one can
only measure angular velocity and momenta for separate
shells; however, the shell definitions lose their significance
once isomerizations start taking place. In addition, the angu-
lar properties become ill-defined for clusters having a central
particle.

The calculation of the MLE was motivated by several
studies indicating possible relations between phase changes
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and this dynamical indicator. The MLE measures the sensi-
tive dependence on initial conditions and is defined from the
exponential separation of two trajectories that start infinitesi-
mally close together in the phase space. A tangent space
approach was used in the numerical calculations [48]. How-
ever, we should mention that semianalytical theories have
also been proposed to quantify the MLE from the statistical
properties of the potential energy surface [49].

The equilibrium thermodynamics of the 2D clusters was
also studied by means of parallel tempering Monte Carlo
(MC) simulations. Parallel tempering is a particularly effi-
cient method to accelerate convergence in systems whose
natural dynamics is affected by broken ergodicity. Most often
such problems are related to multiple funnels [27] or
“glassy” energy landscapes. The MC simulations were per-
formed in the canonical ensemble, with temperatures in the
range 1075 <T<10. About 80 runs were carried out in this
range, with the temperatures nearly equally spaced on a loga-
rithmic scale. 10° MC cycles were used for equilibration,
followed by 10° MC cycles for the actual calculations. The
MC calculations were principally used to compute the ther-
mal properties, such as the heat capacity, C,.

In both MC and MD simulations the relation between the
energy and the temperature is quasilinear.

III. RESULTS

The snapshots obtained from experiments on colloidal
particles [19] or dust plasmas [20,21], as well as the various
molecular dynamics (MD) simulations, exhibit three types of
characteristic motion. At low energy or low temperature, or
for dust plasmas under high pressures, only small amplitude
motion is observed, in which the particles oscillate around
their mean positions. As the energy increases, these oscilla-
tions gain enough momentum to achieve complete rotations
in their respective shells. The directions of these rotations are
random, and they may change over time. However, in order
to preserve the total angular momentum, different shells
must rotate in opposite directions. Eventually, actual isomer-
izations between shells may take place, as previously exam-
ined in 3D systems [29]. In one case, it has also been re-
ported that isomerizations may occur before the full
rotational motion is achieved [20]. We expect this observa-
tion to be due to rather infrequent sampling of the experi-
mental trajectories [20]. It is clear that the angular and the
radial motion of particles contribute differently to all the
measures aforementioned.

In order to study the mechanism of phase transitions in
2D clusters, we have carried out simulations of homoge-
neous clusters systems in the size range 3<n<40. We se-
lected several sizes displaying different but typical character-
istics. In Fig. 1, N\, D, 8, and C,, are plotted with respect to
the average temperature for sizes 17, 21, 22, and 30. The
global minima for these clusters are found to be (1,6,10),
(1,7,13), (2,8,12) and (5,10,15), respectively, in agreement
with Ref. [3]. The MLE starts becoming nonzero at very low
temperatures, around 7=107* In this regime, the dynamics
are more irregular for n=17 and n=21. Similarly, the Linde-
mann index and the diffusion coefficients are also higher for
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n=17 and n=21 in the low T regime. Both these clusters
exhibit an intermediate phase over a broad temperature range
(note the logarithmic temperature scale). On the other hand,
the 30-particle cluster exhibits a single phase transition.

While the three dynamical indicators agree with
one another, the heat capacities provide little information
in comparison. The general behavior observed for all sizes
is that of harmonic oscillators at very low temperatures
[C,— (2n—3)kp] or of free, independent particles at high
temperatures [C,— (2n—3)k; again due to confinement]. In
the intermediate temperature range, a strong decrease is seen
near T~2 for all sizes, following an order-disorder peak
below 7=0.1. The curves for a specific cluster are built on
the basis of this generic behavior, which reminds us of the
caloric curves computed for Lennard-Jones polymers [50].
For some sizes, such as n=21 or n=30, extra bumps or
shoulders occur as a consequence of isomerizations. In gen-
eral, the strong increase of N\, D, or § at T=0.03 correlates
with a peak in the specific heat. However, the phenomena
responsible for the peculiar dynamical features for the 17-
and 21-particle clusters do not have any thermal signature.
The premelting heat capacity peak seen for n=21 at T
=0.01 does not have any counterpart in the dynamical indi-
ces either.

These data can be interpreted using the disconnectivity
graphs shown in Fig. 2. In this figure, saddles connecting two
permutations of the same isomers have been included to ac-
count for the rotational barriers. Such saddles are manifested
by the presence of “copies” of the corresponding minima on
the graph.

The energy barriers, which link the global minimum to
itself through an internal rotation, are much lower for n
=17 (AE=4X107% and n=21 (AE=107°, this is nearly a
case of free rotation) than for larger clusters, where they are
closer to AE=1073. Such degenerate rearrangements [27] do
not play a major role in thermal equilibrium, but can have
important dynamical consequences. This is precisely what
we observe in Fig. 1. The barriers for rearrangements are
much higher in energy than those involved in the rotational
motion, but in some cases other stable isomers lie relatively
close to the global minimum. For n=21 and n=30, such
isomerizations are indeed seen and correlate with bumps in
the canonical heat capacity.

From the previous results it is clear that one cannot draw
general conclusions by looking at dynamical indicators
alone, or at observables aimed at characterizing thermal
equilibrium. We have also looked at two specific cluster
sizes, for which the results of the pure Coulomb case have
been compared to other interaction forms. The 31-particle
cluster was studied with both 1/r and 1/#° interactions, the
latter expression being more relevant to colloidal particles,
such as the ones involved in the experimental setup of Ref.
[19]. The 42-particle cluster has recently been the focus of an
experimental report on dust plasmas [21]. In this situation, a
screened Coulomb or Yukawa form e™"/r is more appropri-
ate than the bare Coulomb law. Here we chose k=1, but the
results presented hereafter in Fig. 3 are not significantly dif-
ferent for other values in the range 0.1 < k=< 10.

We first discuss the 31-particle clusters, which display
different behavior depending on the form of the interaction.
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FIG. 1. (Color online) Dynamic and thermodynamic properties of some homogeneous 2D Coulomb clusters with n=17, 21, 22, and 30
as a function of temperature. (a) Maximal Lyapunov exponent (MLE) \; (b) RMS bond-length fluctuation &; (c) diffusion coefficient D; (d)
canonical heat capacity C,. The data in (a) to (c) are from microcanonical MD simulations; the data in (d) are from canonical Monte Carlo

simulations. C, is in units of the Boltzmann constant.

0.010
0.009
0.008
0.007
0.006
0.005
0.004
0.003
0.002
0.001
0.000

FIG. 2. (Color online) Disconnectivity graphs for the homoge-
neous clusters of Fig. 1. The global minimum energy is shifted to
zero for each size.

While the Coulomb potential leads to a (5,11,15) three-shell
global minimum, the shorter range dipolar interaction favors
a (1,5,10,15) ground state. Because this structure has a cen-
tral particle, the vibrational motion is more constrained, and
the harmonic entropy of (5,11,15) is actually larger. This
competition between energy and entropy leads to a structural
transition, which is seen in the heat capacity of Fig. 3(a) as a
significant peak near 7=0.03, while the melting peak is lo-
cated at T~0.5. The Coulomb cluster behaves very differ-
ently, with a single C, peak at 7=0.03. Scrutiny of the Lin-
demann index indicates that this cluster undergoes free
internal rotation at very low temperatures, T<<10™*, before
fully melting at 7=0.03. In the case of the dipolar interac-
tion, only a single, but very sharp, increase is seen, at tem-
peratures even higher than the melting peak, 7~0.1. This
surprising result has been checked and confirmed by exten-
sive sampling. After regular quenching of the MD trajecto-
ries in this temperature range, we found that the sharp in-
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FIG. 3. (Color online) (a) and (b) Heat capacities of 31- and 42-particle clusters, respectively (in units of the Boltzmann constant). (c) and
(d) RMS bond length fluctuation indices. For n=31, the results of the Coulomb (1/r) and dipolar (1/ ) interactions are shown. For n
=42, the results obtained with the Yukawa potential (¢”"/r) are compared to those with the bare Coulomb form.

crease of o was correlated with a sudden isomerization to the
(5,11,15) second-lowest minimum, which is also involved in
the preliminary structural transition. The lowest energy tran-
sition state from the global minimum was found to be sig-
nificantly higher than the energy of the second isomer. In
such a situation, MD simulations suffer from broken ergod-
icity, since they cannot sample the available phase space un-
til sufficient energy is added. In cluster physics, a well-
studied example of broken ergodicity is provided by the 38-
atom Lennard-Jones cluster [51,52]. The present sharp jump
of the Lindemann index should not be interpreted as the
onset of melting, but rather as a signature of isomerization.

42-particle clusters were investigated with the aim of
finding some thermodynamic confirmation that melting pro-
ceeds in multiple steps. Unfortunately, neither the specific
heats of Fig. 3(b) nor the Lindemann indices of Fig. 3(d)
show any multiple-stage behavior that could be related to the
experimental observation [21]. We thus conclude that the
dust plasma system studied by Melzer and co-workers can-

not be simply modeled as if it were made of a single layer.

Comparing the general curves for the Coulomb, dipolar,
and Yukawa potentials also provides useful information
about the factors influencing the melting point. Yukawa sys-
tems exhibit a significant shift of their melting temperature
toward lower 7. Since the Yukawa potential is an attenuated
form of the pure Coulomb form, this is the expected trend. At
large distances, the dipolar interaction is also much smaller
than the Coulomb interaction. However, the melting tem-
perature of Coulomb clusters is about one order of magni-
tude smaller than for the dipolar cluster. Hence the long-
range part of the potential plays opposite roles in the dipolar
and Yukawa forms. This result suggests that the location of
the melting peak is mainly driven by the short-range repul-
sive part of the potential.

We now turn to small, binary Coulomb clusters, such as
those recently investigated by Drocco and co-workers [16].
N, particles with charge 1 and N, particles with charge 2 are
stabilized in a parabolic trap with A=10. The structures again
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FIG. 4. (Color online) Dynamic and thermodynamic properties of some binary {n,5} 2D Coulomb clusters with n=4-7 versus tempera-
ture. (a) Maximum Lyapunov exponent (MLE) \; (b) RMS bond length fluctuation &, (c) diffusion coefficient D; (d) canonical heat capacity
C,. The data in (a) to (c) are from microcanonical MD simulations; the data in (d) are from canonical Monte Carlo simulations. C,, is in units

of the Boltzmann constant.

consist of concentric shells where the singly charged par-
ticles form the inner shells in order to minimize repulsion.
Drocco et al. used Langevin MD simulations for mixed clus-
ters containing N =3 —-34 singly charged and N,=5, 6, and 7
doubly charged particles, and they also determined the melt-
ing points. These authors concluded that the melting behav-
ior of these binary trapped particles strongly depends on
whether the numbers of particles in the inner and outer shells
are commensurate. They also found that the highest melting
points were obtained for N,=N,+ 1, where the corresponding
structures all have a single particle at the center.

We have performed MD simulations for these heteroge-
neous systems under similar conditions to those of the ho-
mogeneous clusters. In Fig. 4, A, D, 6, and the specific heat
C, are plotted for {4,5}, {5,5}, {6,5}, and {7,5}, selected as
further typical examples, highlighting differences in the sta-
bility and dynamics. The onset of chaos occurs at tempera-

tures close to those seen in the homogeneous systems. {6,5}
is the most stable cluster, in the sense that it has the highest
melting point in Ref. [16], while {5,5} is the most irregular.
Both the diffusion and Lindemann indices show the same
qualitative trends, namely that the melting points, as mea-
sured by the strong increase in &, follow the order {4,5}
<{7,5}<{5,5}<{6,5}.

As for homogeneous clusters, the variation of the heat
capacities does not exactly match the dynamical indices.
Here the generic shape again starts at a constant value at low
temperature, which corresponds to harmonic behavior. The
high-temperature gas phase is still characterized by the same
constant value. In the intermediate temperature range, two
main peaks are associated with the melting of successive
subclusters made of singly charged, then doubly charged par-
ticles. Nearly one order of magnitude separates the two as-
sociated melting temperatures. This interpretation was fur-
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FIG. 5. (Color online) Disconnectivity graphs for the binary
clusters of Fig. 4. The global minimum energy is shifted to zero for
each size.

ther confirmed by calculating the heat capacity of the ternary
{7,6,6} cluster made of seven singly charged particles, six
doubly charged particles, and six triply charged particles. For
this cluster, three clear features are observed in C,, and only
above T~ 2 do the triply charged particles mix with the rest
of the cluster.

On top of this generic behavior, a specific isomerization
shoulder is seen for the heat capacity of the {7,5} cluster in
Fig. 4(d), at the same temperature 7=0.01 where the three
dynamical parameters increase significantly. Again, the free
rotation of some internal shells revealed by \, D, and § at
low temperature has no thermal signature. The disconnectiv-
ity graphs for these clusters are shown in Fig. 5. As is par-
ticularly obvious from the graphs for {5,5} and {6,5}, com-
mensurate structure between the singly and doubly charged
shells is not the only factor needed to explain the compli-
cated behavior exhibited by these finite Wigner crystals. The
extremely low barriers for the {4,5} and {5,5} clusters permit
facile rotation, which is correlated with the rapid increase of
all dynamical indicators at low temperatures. The {6,5} clus-
ter is especially resistant to isomerization because an extra,
central particle hinders the radial motion of the particles in
the other shells. Only for the {7,5} cluster is the isomeriza-
tion energy low enough to give rise to an extra peak in the
heat capacity. This case, and the case of the single-isomer
{6,5} cluster, further show that the multiple-peak structure of
the heat capacity is not a consequence of isomerizations.
Therefore the general, two-peak shape of the heat capacity is
not related to isomerization, but is intrinsic to the potential
itself and the presence of two types of particles organized in
shells.

The variation of the melting temperature with cluster size
is shown in Fig. 6 for the three {n,4}, {n,5}, and {n,6} bi-
nary series, with 2=<n=<20. Here the melting temperature
was defined according to the Lindemann criterion as the tem-
perature where ¢ sharply increases above 0.1. The variation
of the computed melting point is qualitatively similar to that
reported by Drocco and co-workers [16]. In particular, the
high values for {4,4}, {5,5}, {6,5}, and {7,6} are reproduced.
However, our results quantitatively differ from those of
Drocco et al. by a factor of at least 10. Our data, obtained
with exactly the same Hamiltonian as in Ref. [16], are in
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FIG. 6. (Color online) Size evolution of the melting point of the
{n,4}, {n,5}, and {n,6} series of binary Coulomb clusters as ob-
tained from the Lindemann criterion.

agreement with the computed melting points for the homo-
geneous clusters, which are comparable with previous results
for the same systems [3]. Even though the present tempera-
tures result from time averages in our MD simulations, their
range matches the canonical temperature of our MC runs.
Hence we believe that the data of Fig. 6 are reliable, and that
the differences from the results obtained by Drocco and co-
workers are the consequence of an unreported alternative
choice of A in the Hamiltonian used in Ref. [16].

Lastly, we discuss the behavior of larger clusters and how
melting evolves toward bulk. In Fig. 7(a) we show the heat
capacities calculated from MC simulations for the cluster
sizes n=100, 200, and 500. The general trend is that the main
peak near 7=0.04 becomes narrower and sharper, suggest-
ing that melting is a first-order process rounded by finite size
effects [53]. However, the main heat capacity peak remains
quite broad, so a more detailed study should probably be
performed on even larger sizes, including a proper finite-size
scaling analysis. In addition, extra features in the heat capac-
ity are present at low temperatures, even for the largest 500-
particle cluster. Regular quenching confirms that these pre-
melting effects are due to isomerizations involving different
arrangements of the inner shells. At large sizes, even though
the global shape of the cluster is roughly circular, the radial
ordering into shells is replaced by a triangular close-packed
lattice, possibly with several defects [13]. Rotation of the
various shells then becomes hindered, and the dynamics is
reduced to more usual consecutive isomerizations.

Figure 7(a) supports the idea that a single, first-order
phase transition should occur in the bulk limit, if the limit
could be defined. Since there is no unified theory of 2D
melting [54], we should probably be cautious in extrapolat-
ing the heat capacities computed from Monte Carlo simula-
tions. If we choose the peak of the heat capacity as the sig-
nature of melting, the melting point thus defined shows very
pronounced variations with the cluster radius n'2, as illus-
trated in Fig. 7(b).

The data for all sizes in the range 5 <n <50 and for larger
clusters (n=60, 70, 80, 90, 100, 120, 140, 160, 180, 200,
250, 300, 350, 400, 450, 500) are included in this graph. The
strong size dependence for small systems is similar to that
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FIG. 7. (Color online) (a) Canonical heat capacities (in units of the Boltzmann constant) of some large homogeneous clusters. (b) Melting

point of homogeneous clusters versus their radii.

observed for the binary systems. However, in the range 50—
500 the variation of the melting point seems less drastic than
in the smaller size range, even though numerous sizes are
obviously missing from the reported data. The bulk limit for
the melting point is seen to be 0.039.

This observation should not obscure the possibility that
even large sizes can exhibit a multiple-stage melting. For
example, significant premelting peaks have been reported in
large atomic clusters [55]. The results obtained for n=500
show a similar feature. Even though some premelting peaks
are present in the caloric curves of large clusters, a major
peak seems to dominate above about 100 ions. This result
may suggest that the transition between the finite size regime
and bulk [36] takes place near this size.

IV. DISCUSSION AND CONCLUSION

In this work, we have investigated some dynamic and
thermodynamic properties of finite 2D charged particles con-
fined by a parabolic trap. Our extensive data on homoge-
neous and heterogeneous clusters were obtained from MD
and MC simulations. These data were interpreted by visual-
izing the energy landscape through disconnectivity graphs.
Previous experimental and numerical findings suggest that
there are three types of motion for a particle: it can oscillate,
rotate in a relatively regular orbit, or make jumps between
shells, possibly causing isomerizations. These various phe-
nomena were also observed in the present work, but we
found evidence that additional “premelting” events due to
structural transitions may also occur. The various stages of
melting create ambiguities in defining the melting point, es-
pecially in small clusters.

Firstly, rotational motion is facile when very small energy
barriers separate the global energy minimum from itself, as is
apparent from the disconnectivity graphs for the 17- and 21-
particle homogeneous clusters, or the {4,5} binary cluster.
Internal rotation may give rise to significant jumps in the
RMS bond-length fluctuation, sometimes above 0.1. Radial

melting is then seen as yet another increase in & or other
dynamical indicators at higher energy. Therefore, the Linde-
mann criterion (6=0.1) is not fully reliable for detecting
melting.

Secondly, rotational melting has no thermodynamic con-
sequence since only a single isomer is involved. The thermo-
dynamics is sensitive to the presence of different isomers,
and also to the intrinsic shape of the potential felt by the
particles. Irrespective of the isomers, the heat capacity has a
natural drop over a rather broad temperature range, which
marks the continuous transition toward the gas phase. Hence,
even a single-isomer cluster can have heat capacities with
complex temperature dependence, as exemplified by the
small {4,5} binary clusters.

Thirdly, several isomers can give rise to preliminary peaks
in the heat capacity, which may sometimes obscure the fea-
tures associated with full radial melting. We found such a
case for the 31-particle cluster interacting through dipolar
forces, but very large clusters can also exhibit particularly
strong premelting peaks. The structural transition occurring
in the 31-particle cluster has the same origins as the fcc-
icosahedral transition in the 3D 38-atom Lennard-Jones clus-
ter [51,52]: the second morphology has a much larger en-
tropy than the global minimum. This phenomenon has
important consequences for the constant energy dynamical
behavior, as this transition is not seen until sufficient energy
to surmount the isomerization barrier is present. Thus there is
a finite energy range where MD simulations starting from the
ground state structure are nonergodic, which is reflected by a
strong shift in the estimated melting temperature.

Most of our results illustrate how a simple and unique
picture of melting is hampered by finite size effects. Both the
dynamical parameters and the thermodynamical curves con-
tribute to explaining related but different aspects of melting
in these 2D clusters. In particular, our work does not support
a single parameter as a universal measure for the melting
point that could be used unambiguously for all clusters. Nev-
ertheless, the landscape approach [27] that has been followed

026110-8



FINITE-SIZE EFFECTS IN THE DYNAMICS AND...

here was found to provide useful insight for interpreting and
understanding the various numerical data.

The data gathered here for a broad range of sizes would
seem to prevent a general classification on the phenomenol-
ogy of melting to be made. For example, the choice of mo-
lecular dynamics or Monte Carlo method, and the microca-
nonical or canonical ensemble, can change the observed
behavior significantly, particularly at small sizes where the
differences between the two statistical ensembles are the
largest. For instance, some structural transitions might not
appear with conventional MD methods, due to the discon-
nected character of phase space at low total energies.

However, three main categories of behavior can be in-
ferred from our results. Especially in small clusters, a two-
step orientational-then-radial melting has been observed,
with clear dynamical signatures, but only a weak thermody-
namical signature. Clusters exhibiting structural transitions,
on the other hand, may not involve any rotational melting but
display a strong change in their caloric curve. Finally, a more
conventional single-step melting is sometimes seen, as ex-
pected in larger clusters, and also for smaller “magic” sizes.

PHYSICAL REVIEW E 72, 026110 (2005)

Our calculations indicate that significant finite size effects
remain in the thermodynamics of the largest clusters consid-
ered. However, above a few hundred ions, melting seems to
be essentially a one-step process. This result is consistent
with the expectation that the dynamics become more and
more dominated by localized processes, due to the less fa-
vorable rotational motion. This observation seems to justify
the use of the Lindemann index or other dynamical param-
eters for larger systems. Additionally, the main heat capacity
peak becomes larger, and its maximum value coincides with
the onset of disorder in the dynamical indicators. Even
though premelting features may remain noticeable, we ex-
pect the onset of radial melting to become closer and closer
to orientational melting, and eventually similar to a bulk
first-order melting process.

ACKNOWLEDGMENT

We are grateful for a collaborative research grant given by
CNRS and TUBITAK.

[1] Yu. E. Lozovik and V. A. Mandelshtam, Phys. Lett. A 145,
269 (1990).
[2] Yu. E. Lozovik and V. A. Mandelshtam, Phys. Lett. A 165,
469 (1992).
[3] V. M. Bedanov and F. M. Peeters, Phys. Rev. B 49, 2667
(1994).
[4] V. A. Schweigert and F. M. Peeters, Phys. Rev. B 51, 7700
(1995).
[5] E. M. Peeters, V. A. Schweigert, and V. M. Bedanov, Physica B
212, 237 (1995).
[6] B. Partoens and F. M. Peeters, J. Phys.: Condens. Matter 9,
5383 (1997).
[7] V. A. Schweigert and F. M. Peeters, J. Phys.: Condens. Matter
10, 2417 (1998).
[8] L. Candido, J.-P. Rino, N. Studart, and F. M. Peeters, J. Phys.:
Condens. Matter 10, 11627 (1998).
[9] V. A. Schweigert, 1. V. Schweigert, A. Melzer, A. Homann,
and A. Piel, Phys. Rev. Lett. 80, 5345 (1998).
[10] W.-T. Juan, Z.-H. Huang, J.-W. Hsu, Y.-J. Lai, and L. I, Phys.
Rev. E 58, R6947 (1998).
[11] A. A. Koulakov and B. 1. Shklovskii, Phys. Rev. B 57, 2352
(1998).
[12] Yu. E. Lozovik and E. A. Rakoch, Phys. Lett. A 240, 311
(1998).
[13] Y.-J. Lai and L. I, Phys. Rev. E 60, 4743 (1999).
[14] L. V. Schweigert, V. A. Schweigert, and F. M. Peeters, Phys.
Rev. Lett. 84, 4381 (2000).
[15] M. Kong, B. Partoens, and F. M. Peeters, Phys. Rev. E 65,
046602 (2002).
[16] J. A. Drocco, C. J. Olson Reichhardt, C. Reichhardt, and B.
Janko, Phys. Rev. E 68, 060401(R) (2003).
[17] A. Melzer, A. Homann, and A. Piel, Phys. Rev. E 53, 2757
(1996).
[18] R. Bubeck, C. Bechinger, S. Neser, and P. Leiderer, Phys. Rev.

Lett. 82, 3364 (1999).

[19] M. Saint Jean, C. Even, and C. Guthmann, Europhys. Lett. 55,
45 (2001).

[20] A. Melzer, Phys. Rev. E 67, 016411 (2003).

[21] R. Ichiki, Y. Ivanov, M. Wolter, Y. Kawai, and A. Melzer,
Phys. Rev. E 70, 066404 (2004).

[22] P. Leiderer, J. Low Temp. Phys. 87, 247 (1992).

[23] C. Sikorski and U. Merkt, Phys. Rev. Lett. 62, 2164 (1989); R.
C. Ashoori, H. L. Stormer, J. S. Weiner, L. N. Pfeiffer, S. J.
Pearton, K. W. Baldwin, and K. W. West, ibid. 68, 3088
(1992).

[24] E. J. Yarmachuk and R. E. Packard, J. Low Temp. Phys. 46,
479 (1982).

[25] F. Chevy, K. W. Madison, and J. Dalibard, Phys. Rev. Lett. 85,
2223 (2000).

[26] K. Zahn, J. M. Mendez, and G. Maret, Phys. Rev. Lett. 79,
175 (1997).

[27] D. J. Wales, Energy Landscapes (Cambridge University, Cam-
bridge, 2003).

[28] J. J. Thomson, Philos. Mag. 7, 237 (1904).

[29] D. J. Wales and A. M. Lee, Phys. Rev. A 47, 380 (1993).

[30] B. Rinn and P. Maass, Phys. Rev. Lett. 86, 4711 (2001).

[31] L. V. Schweigert, V. A. Schweigert, and F. M. Peeters, Phys.
Rev. Lett. 86, 4712 (2001).

[32] F. Calvo, in Progress in Chemical Physics Research, edited by
A. N. Linke (Nova Science Publishers, Happauge, NY, in
press).

[33] H.-P. Cheng and R. S. Berry, Phys. Rev. A 45, 7969 (1992).

[34] J.-B. Maillet, A. Boutin, S. Buttefey, F. Calvo, and A. H.
Fuchs, J. Chem. Phys. 109, 329 (1998).

[35] G. A. Breaux, R. C. Benirschke, T. Sugai, B. S. Kinnear, and
M. F. Jarrold, Phys. Rev. Lett. 91, 215508 (2003).

[36] F. Calvo and F. Spiegelman, J. Chem. Phys. 112, 2088 (2000).

[37] R. J. Hinde, R. S. Berry, and D. J. Wales, J. Chem. Phys. 96,

026110-9



YURTSEVER, CALVO, AND WALES

1376 (1992).

[38] C. Amitrano and R. S. Berry, Phys. Rev. Lett. 68, 729 (1992).

[39] E. Yurtsever, Europhys. Lett. 37, 91 (1997).

[40] F. Calvo, J. Chem. Phys. 108, 6861 (1998).

[41] F. Calvo, Phys. Rev. E 58, 5643 (1999); 60, 2771 (2001).

[42] D. J. Wales and R. S. Berry, J. Phys. B 24, L.351 (1991).

[43] G. Geyer, in Computing Science and Statistics: Proceedings of
the 23rd Symposium on the Interface, edited by E. K. Kerami-
das (Interface Foundation, Fairfax Station, VA, 1991), p. 156.

[44] O. M. Becker and M. Karplus, J. Chem. Phys. 106, 1495
(1997).

[45] D. J. Wales, M. A. Miller, and T. R. Walsh, Nature, 394, 394
(1998).

[46] Z. Li and H. A. Scheraga, Proc. Natl. Acad. Sci. U.S.A. 84,
6611 (1987).

[47] D. J. Wales and J. P. K. Doye, J. Phys. Chem. A 101, 5111

PHYSICAL REVIEW E 72, 026110 (2005)

(1997).

[48] G. Benettin, L. Galgani, and J.-M. Strelcyn, Phys. Rev. A 14,
2338 (1974).

[49] L. Casetti, R. Livi, and M. Pettini, Phys. Rev. Lett. 74, 375
(1995).

[50] F. Calvo, J. P. K. Doye, and D. J. Wales, J. Chem. Phys. 116,
2642 (2002).

[51]7J. P. K. Doye, M. A. Miller, and D. J. Wales, J. Chem. Phys.
110, 6896 (1999).

[52] J. P. Neirotti, F. Calvo, D. L. Freeman, and J. D. Doll, J. Chem.
Phys. 112, 10340 (2000).

[53] P. Labastie and R. L. Whetten, Phys. Rev. Lett. 65, 1567
(1990).

[54] V. N. Ryzhov and E. E. Tareyeva, Phys. Rev. B 51, 8789
(1995).

[55] F. Calvo and F. Spiegelman, J. Chem. Phys. 120, 9684 (2004).

026110-10



